
Articles

Evaluation of Docking Functions for Protein-Ligand Docking
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Docking functions are believed to be the essential component of docking algorithms. Both
physically and statistically based functions have been proposed, but there is no consensus about
their relative performances. Here, we propose an evaluation approach based on exhaustive
enumeration of all possible docking solutions obtained with a discretized description of a rigid
docking process. We apply the approach to study both molecular mechanics and statistical
potentials. It is found that the statistical potential evaluated is less effective than the AMBER
molecular mechanics function to provide an accurate description of the docking process when
the exact experimental coordinates are used. However, when coordinates of crystal structures
obtained with analogous ligands are used, similar performances are obtained in both cases.
Possible reasons for the successes and failures of both docking schemes have been uncovered
using linear discriminant analysis, on the basis of a set of physicochemical descriptors capturing
the main physical effects at play during protein-ligand docking. In both types of potentials
steric effects appear critical to obtain a successful docking. Our results also indicate that
neglecting desolvation effects and the explicit treatment of hydrogen bonds are the main source
of the failures observed with the molecular mechanics potential. On the other hand, detailed
consideration of steric interactions, with a careful treatment of dispersive forces, seems to be
needed when using statistical potentials derived from a structural database. The possibility of
filtering combinatorial libraries in order to maximize the probability of correct docking is
discussed.

Introduction

The growing interest and widespread application of
structure-based virtual screening in Medicinal Chem-
istry1 has evidenced the need for the development of
better, more accurate docking functions.2 Two different
types of scoring schemes are being used at present: first
principles molecular mechanics (MM) force fields and
statistical potentials (either in the form of empirical
scoring functions or knowledge-based methods). In
general, physically motivated force fields, such as those
used in MM calculations, have yielded limited results
in protein-ligand docking, which has stimulated the
search for alternative docking force fields. There have
been recent advances with incorporation of improved
electrostatics models and approximate descriptions of
hydrophobic effects.3-5 Also recently, knowledge-based
or potential of mean force (PMF) statistical potentials
have shown some encouraging results in the related
problem of affinity ranking,6-10 and for this reason they
have been strongly advocated in the docking problem
as well,11,12 but so far there is only limited experience
with them. Despite all this progress, no docking function
seems to be still effective enough. The situation is
summarized by the results of the docking section of the
CASP2 meeting, where a variety of methods were used

to score the docking solutions. In his analysis of CASP2
results, Dixon13 concluded that while conformational
sampling was reasonable, docking functions were not
reliable enough to separate nativelike answers from
alternative solutions.

The docking function is therefore, at this juncture, the
component of the docking algorithm that needs better
understanding. To advance, we need a way to single out
which elements in the docking function need to be
introduced or modified, coupled to a method of assessing
improvements in the function. When addressing the
question of which of the various alternative scoring
schemes is more adequate in protein-ligand docking,
it becomes essential to have an accurate assay to
measure success, since only with the availability of a
good test at hand it will be possible to discover those
elements of the function which are still lacking or in
need of refinement. Usually, tests of docking force fields
focus on the deviation from the experimental structure
of the minimum energy solution found by a given
docking algorithm.13,14 Recent experience15 suggests
that this approach is insufficient. First, by using stan-
dard docking programs, the issue of the ability of the
function to discriminate the experimental solution from
alternative decoys or poses gets convoluted with the
ability of the search scheme to surmount kinetic barriers
created by the potential.16 In other words, there is no
guarantee that the global minimum is found, and for

* To whom correspondence should be addressed. Phone: (212) 241-
6533. Fax: (212) 860-3369. E-mail: ortiz@inka.mssm.edu.

3768 J. Med. Chem. 2001, 44, 3768-3785

10.1021/jm010141r CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/13/2001



this reason, while ultimately the docking function needs
to be implemented together with a given search algo-
rithm, it is convenient to decouple both problems.
Second and more important, looking at the minimum
energy solution only, even if that solution contains the
global minimum, can be misleading. The global energy
minimum of the effective energy function (even if it
contains entropy contributions coming from degrees of
freedom averaged out, such as in the PMF case) can be
entropically unfavorable (for the configurational and
conformational solute entropies making up the width
of the docking funnel) and hence thermodynamically
unstable. In addition, large energy barriers can also
surround it, making it kinetically inaccessible.

A recent paper by Verkhivker et al.15 illustrates
clearly this concept. These authors have studied docking
failures in three ligand-protein systems using a com-
bined thermodynamic and kinetic analysis of their
binding energy landscapes. In their study, Verkhivker
and co-workers found that docking algorithms can be
mistaken when the native binding mode, even if having
the lowest stabilization energy, corresponds to a narrow
and isolated region on the binding energy landscape
with a small energy gap with alternative binding modes.
In these cases, neither the determination of a single
structure with the lowest energy nor finding the largest
cluster of structurally similar conformations allows the
docking algorithm to detect with confidence the native-
like binding mode. In these cases both thermodynamic
stability and kinetic accessibility are compromised, and
the docking algorithm is prone to failure. The conclusion
to draw from this study is that it is necessary to consider
the optimization of the complete shape of the energy
landscape, and not only the position of its global
minimum, when developing and testing docking func-
tions.

Here, we present a new approach, the coverage-error
plots (CEPs),17 to evaluate quantitatively docking force
fields using the complete pool of solutions obtained after
exhaustive enumeration of all rigid docking solutions
at a given resolution level. The exhaustive enumeration
also allows an approximate reconstruction of the shape
of the energy landscape. Using a diverse dataset of
protein-ligand complexes, we evaluate two different
types of docking functions: the well-known AMBER MM
force field18 and the statistical potential developed by
Muegge and Martin.9 These two potentials are taken
only as representatives of the two types of functions,
and the comparison between them is established only
in order to obtain insight about their respective strengths
and deficiencies as force field classes. First, we show
the close correspondence between CEPs and docking
energy landscapes. Then, we use CEPs to study the
docking functions under two different situations: using
the experimental coordinates for ligand and receptor
and also using the coordinates of the receptor obtained
with a close analogue of the ligand. The comparison
allows us to evaluate the effects that coordinate shifts
in the receptor have in the performance of the poten-
tials. Finally, we apply the multivariate technique of
linear discriminant analysis19 to the quantitative results
provided by CEPs in order to better understand the
physical origin of the successes and failures of the
potentials. To this end, each complex is encoded as a

set of physicochemical descriptors to capture the main
interactions taking place during the docking process.
The models obtained are interpreted and used to suggest
ways to improve the current use and future development
of docking functions.

Methods
Dataset. A test set of 34 crystallographic non-covalent

protein-ligand complexes, selected to have diversity in their
ligand atom types and binding site shapes, has been used
(Chart 1). It comprises a set of 17 pairs of complexes of the
same protein bound to two different, usually related, ligands.
For each complex, protein hydrogen atoms where first posi-
tioned using the AMBER 5.0 package,20 while for the ligand
hydrogen atoms were added using SYBYL.21 No further
preparation of the complexes was carried out. Specifically,
complexes were not energy minimized with the scoring func-
tions. In the case of the MM force field, AMBER charges were
used for the protein, while Gasteiger-Marsilli22 atomic charges
as implemented in SYBYL21 were used for the ligands.

Docking Functions. (a) Molecular Mechanics Based
Function. The nonbonded interaction energies of the AMBER
force field18 using an all atom model were employed. The
equation used has the form

In eq 1, Aij and Bij represent the van der Waals parameters
of the atom types to which atoms i and j belong, qi and qj are
the partial charges of atoms i and j, respectively, and rij is the
distance between them. We refer to the AMBER potential for
details about parameters.18 A constant dielectric of ε ) 4 was
used to scale down the electrostatic term. We note that, while
more complex MM approaches have been proposed for the
docking problem,23,24 the use of eq 1 or close variants is still a
fairly common approach in many docking programs.25-27

(b) Statistical Potential Based Function. PMF poten-
tials were generously provided by Dr. Muegge.9 Since values
are tabulated at 0.2 Å intervals from 0.2 to 12 Å, a linear
interpolation scheme is required in order to compute the
potential for each atom-grid point interaction. The function
being computed for each kl protein-ligand atom pair of type
ij is

In eq 2, kB is the Boltzmann factor, T is the absolute
temperature, f j

vol corr(r) is the ligand volume correction factor,
Fii

seg(r) is the number density of atom pair ij occurrences at a
certain distance, and Fij

bulk is the reference number density
for that pair ij. For details about derivation of these param-
eters, we refer the reader to the original paper by Muegge and
Martin.9

The correct implementation of this potential in our docking
scheme has been validated by reproducing the reported linear
correlation with observed activities for the set of 16 serine
protease complexes analyzed in Figure 4 of Muegge and
Martin.9 Our implementation gives a squared correlation
coefficient r2 ) 0.88, while Muegge and Martin report a similar
value, of 0.87. Likewise, PMF scores produced with our
implementation have a squared correlation coefficient r2 ) 0.96
with the scores reported by Muegge and Martin for this set of
complexes. The slight discrepancies observed can be attributed
to differences in our automated procedure for atom type
assignment compared to that of Muegge and Martin.

Additionally, a Lennard-Jones repulsion term (1/r12 term in
eq 1) using the AMBER parameters for each atom pair is added
to provide the steric effects lacking in the PMF potentials at
short distances. Our implementation is consistent with the
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Chart 1. Set of 34 Crystallographic Protein-Ligand Complexes Used in This Worka
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implementation of Muegge and collaborators of the same PMF
parameters for docking.28 They added the complete 6-12
potential29 for distance pairs shorter than the longest unoc-
cupied distance bin for the respective atom types in the
database, and overwrite the PMF potential if the van der
Waals (VDW) interaction is larger than 4 kcal/mol. Thus, at
the short distances at which the VDW potential becomes
operative, the VDW interaction is heavily dominated by the
repulsion term in their approach, which thus becomes ef-
fectively the same as ours.

Finally, we note that the original PMF potential encoded
in eq 2 was initially formulated with the aim of solving the
rank affinity problem, not the docking problem. However, both
problems are related, and in fact Muegge and collaborators
have recently tested successfully the same PMF potential as
a docking function.11 Moreover, Golhke et al.12 have recently
proposed a very similar formalism explicitly for the docking
problem.

Docking Method. (a) Grid Description of the Binding
Space and Energy Precomputation. The protein-ligand
intermolecular energy is precomputed using an underlying
three-dimensional grid. A gridded box is created by adding a
3.0 Å cushion to the maximum dimensions of the ligand
complexed with the protein and using a grid spacing of 0.3 Å.
The atom-atom interaction energy is precomputed in the grid
and then used to calculate for each ligand atom the protein-
ligand interaction energy from the nearest eight surrounding
grid points using a trilinear interpolation30 method:

where a-c are distances along the x-, y-, and z-coordinates
from atom i to the point (k,l,m); s is the grid spacing; and V is

the precalculated potential on each grid point. The test charge
and atom type method is used for the computation of the
potentials.

The error accumulated from the energy interpolation and
atom type simplification was evaluated. A squared correlation
factor (R2) of 0.97 on the linear fitting was found when a grid
spacing of 0.3 Å was used (Figure 1). This level of error is
similar to that reported in other implementations of the same
approach.31

(b) Exhaustive Search Algorithm. In our docking search,
we carried out a complete enumeration of all possible orienta-
tions of the rigid ligand in the active site of the rigid protein.
The six relevant degrees of freedom, three translational and
three rotational, are first discretized. The molecule is trans-
lated and rotated in the docking region using the ligand’s
center of mass, which is moved consecutively to every grid
point in the box using a grid spacing of 0.3 Å. At each grid
point, a complete sampling of the rotational space is achieved
by computing all nondegenerate sets of Euler angles32 obtained
with a resolution of 27° arc. Initial tests indicated that it is
necessary to relax the lattice conformation off-lattice in order
to avoid artifacts arising from the discrete sampling. For this
reason, at each rotational and translational point the ligand
was subjected to a rigid body off-lattice energy minimization
using the SIMPLEX algorithm from Nelder and Mead33 as
described in Numerical Recipes.34 Structures having steric
clashes after minimization (EVDW > 10 kcal/mol) were dis-
carded for further analysis.

Analysis Methods. (a) Docking Energy Landscapes.
Energy landscapes are studied by computing docking energies
for each point in conformational space, considered as a function
of the displacement from the experimental orientation, and
represented by the six relevant degrees of freedom. To visualize
the seven-dimensional energy landscape, for every stored

Chart I (Continued)

a The PDB code,59 structure resolution (Å), protein name (from the PDB header), and the ligand 2D structure are displayed.
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conformation from the exhaustive search (from 4000 to 1000 000
depending on the complex), the six ligand degrees of freedom
are projected onto two orthogonal axes: translational and
rotational. Translational projections are computed as Euclid-
ean distances between the centers of mass at the grid point i
and the experimentally observed docking position; while
rotational projections are calculated as the root mean square
deviation (RMSD) of the rotated unit vector local coordinate
frame with that of the docked conformation.

(b) Coverage-Error Plots. Coverage-error plots (CEPs)17

are used to quantify, at different levels of precision (i.e., RMSD
deviation from experiment), the behavior of the docking energy
function. Three levels of precision (0.5, 1.0, and 2.0 Å) were
evaluated to assess the maximal resolution of every function.
However, and for the sake of clarity, functions are discussed
here using only the 2.0 Å cutoff. The amount of error that the
docking function accumulates in order to recover a given
percentage of the pool of successful solutions is computed as

follows: (i) We fix a given RMSD threshold (defining good
conformations), and generate a “sorted by RMSD” list of poses.
The size of the list is determined by the number of conforma-
tions found during the simulation to have an RMSD below the
threshold. (ii) We create another list, with an identical number
of entries, this time using a “sorted by energy” convention,
containing the lowest energy conformations found during the
simulation. (iii) We count down the “sorted by energy” list and
check whether each entry is found also in the “sorted by
RMSD” list. (iv) We keep track of the fraction of the conforma-
tions in the “sorted by RMSD” list assigned (coverage), and at
each point we register the cumulative error (error per query)
obtained in the in the “sorted by energy” list. (v) At the end of
the count (coverage is one), we obtain the total error ac-
cumulated by the function (a number between 0 and 1). Figure
2 summarizes the overall procedure. We note that in practice
we use two additional auxiliary lists: an RMSD auxiliary list
for the energy and an energy auxiliary list for the RMSD.

Figure 1. Correlation between per-atom energies interpolated from the grid approximation vs their counterparts obtained by
direct calculation: (a) electrostatic energy; (b) van der Waals energy. The inset shows the van der Waals energies for those atoms
with values below 10 kcal/mol. Regression coefficients are also shown.
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When we check the existence of a particular conformation in
step iv, we actually check the matching of both RMSD and
energy using the auxiliary lists. We used this approximation
in order to avoid the storage of the translational vector and
rotational matrices defining each conformation. Tests demon-
strated that the error introduced does not have impact in the
results.

(c) Discriminant Analysis. Linear discriminant analysis
(LDA)19 is a pattern recognition technique normally used to
determine which variables discriminate between two or more
occurring groups. Specifically, LDA provides answer to the
question of whether two or more groups of objects are
significantly different from each other with respect to the mean
of a particular set of descriptors used to characterize them.
LDA seeks to find a low-dimensional space in which groups
are projected while group discrimination is optimal. The linear
discriminant functions can be used to identify outcome variable
constructs (or latent variables) that underlie the group differ-
ences. It is known that the method is Bayes-optimal in the
case where the groups under study follow a normal distribution
and have the same covariance structure. We will describe the
quality of these discriminant functions with four indices:

(1) Wilks’ Lambda (Λ*). It compares the matrix of pooled
within-group variances and covariances on one hand with the
matrix of total variances and covariances on the other. It is
defined as

where B + W is the total variance-covariance matrix and W
is the within groups variance-covariance matrix, g is the
number of groups, and ni is the number of objects within each
group. Vectors 〈x〉 and 〈x〉i are the total and group averages,
respectively. Matrices are built after projection onto the low-
dimensional solution found by LDA. The Wilks’ Λ varies from
0 to 1, and the smaller the Λ, the larger the differences, and
the better the discrimination.

(2) F-Test. It provides a statistic related to the Wilks’ Λ
corresponding to the tested discriminant function, but focused
on the separation of the group centroids:

(3) Significance Level (P-Value) of the F-Test. This tests
the probability that the Fischer F computed above could have

been obtained by chance. The test rejects the null hypothesis
at the R confidence level if

The level of R for which F ) FR is selected as the P-value.
(4) Discrimination Power. This is the classification

accuracy achieved by the discriminant function as compared
with the expected error in classification. This expectation is
computed by leave-one-out cross-validation of each of the
members of the sample using the Lachenbruch’s hold-out
procedure.19 This procedure provides a nearly unbiased esti-
mate of the expected actual error rate (ê). The discrimination
power (D) is then D ) 100(1 - ê). We considered models with
at least 70% discrimination.

Each complex was characterized by a set of physicochemical
descriptors representing the main effects at play during the
docking process (steric effects; hydrogen bond effects; hydro-
phobic effects; electrostatic and polar effects), encoded in the
following variables.

SA: Ligand van der Waals surface area (Å2), calculated
using the grid method defined by Bodor et al..35

VO: Ligand van der Waals volume area (Å3), calculated
using the grid method.35

SL: Ligand electrostatic component of solvation energy
(kcal/mol), obtained by multiplication of the solvent reaction
field by the charges of the ligand:

where Q represents the charge set of the ligand. Potentials
generated by the ligand charges under vacuum and solvent
(φQ

vac and φQ
sol, respectively) are evaluated using the finite

difference method to solve the Poisson equation. An internal
dielectric of 2 was assigned to the ligand molecular interior,
defined as the region inaccessible to a 1.8 Å probe sphere. A
solvent dielectric constant of 80 was used to represent water
and 1 for vacuum. A grid box with 75% occupancy by the ligand
was defined, containing 8 grid points/Å on each axis.

LP: log P, using atomic parameters derived by Ghose
et al.36

MR: Molar refractivity,36 using parameters derived by
Ghose et al..36 Molar refractivity is given by the Lorentz-
Lorentz equation:

where M is the molecular weight, δ is the density of a crystal
of the molecule, and µ is the refractive index.

MP: Molecular polarizability, following the atomic param-
eters derived by Miller et al.37

HB: Total number of possible hydrogen bonds (donor +
acceptor) in the ligand.

HBZ: Ligand hydrogen bonds formed in the ligand binding
site.

L/BS: Percentage of the free binding site volume occupied
by the ligand volume (VO/BSV × 100). The grid used to store
the precomputed potentials is employed to approximate the
binding site volume (BSV) by counting the volume of the cubes
defined by all the grid points that are not in contact with
protein atoms.

L/HB: Surface area of the ligand (Å2) per hydrogen bond
(SA/HB).

SA, VO, LP, MR, and MP were calculated using HYPER-
CHEM 6.38 SL was calculated using DELPHI.39 HBZ was
calculated using LIGPLOT.40

Results and Discusion
Coverage-Error Plots and Energy Landscapes. CEP

analysis provides information about the error that the

Figure 2. Description of a coverage-error (CEP) calculation.
See Methods for a detailed explanation of the algorithm.
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docking function needs to accumulate in order to recover
a given percentage of the pool of the user-defined set of
good solutions. In Figure 3 we show that CEP plots bear
considerable correspondence with docking energy land-
scapes. For the sake of illustration, we divide the CEP
at 100% coverage in three different regions (I-III in
Figure 3). Region III comprises those cases for which
nativelike solutions in the CEP plot are well separated
in energy (i.e., recovered first) from all (or most of)
alternative poses. Consequently, an energy gap exists
between nativelike and nonnativelike poses. This is
reflection of a funnellike shape of the binding energy
landscape for the complex, as observed for instance in
the case of 1abe in Figure 3a, where a clear funnel
toward the nativelike basin region is observed. Region
II, on the other hand, contains cases for which nativelike
solutions are mixed in their energy levels with alterna-
tive poses. For example, the binding energy surface of
1ela in Figure 3a shows two minima of similar energy
separated by an energy barrier, one nativelike and the
other corresponding to a family of misdocked solutions.
Finally, in region I coverage is complete and yet no
nativelike poses have been detected. Therefore, and as
shown for the case of 1dbm, the global minimum is in a
region of conformational space separated from the
nativelike basin. A similar situation can be observed for
the PMF potential in Figure 3b.

In Table 1a, we summarize the evaluation of the
docking results and the function performance as mea-
sured using CEPs, and compare it with the traditional
criterion of analyzing only the global energy minimum
provided by the algorithm. In general, there is a good
correspondence between both sets. Thus, in cases where
the function cannot find a correct docking solution (in
red in Table 1a), both evaluation methods agree. How-
ever, some differences also emerge. In some cases a good
solutionsas considered by the usual criterionsis found
by the program, but the CEP results indicate these good
solutions are close in their energy levels to wrong
alternative states, which is reflected by a medium to
high error in the CEP plot (yellow background). As
discussed in the Introduction, this mixing creates dif-
ficulties to stochastic algorithms in finding correct
solutions, and therefore should be avoided. The colored
blue background highlights the resolution of the func-
tion, that is, the RMSD threshold required to obtain a
successful result in each case. The higher the resolution,
the more reliable the function is.

Function Performance with Exact Coordinates. When
experimental coordinates for both ligand and receptor
are used by the rigid docking algorithm (exact coordi-
nates, hereafter), we find that the MM function slightly,
but significantly, outperforms the PMF function. By
judging our results using the standard approach of
measuring the RMSD of the lowest energy conformation,
our rigid body approach succeeded in 27 out of 34 cases
(i.e., 79% success rate) for the MM force field and in 22
out of 34 (59%) for the PMF potential (Table 1a, using
1.5 Å cutoff to define success). The success rate is
comparable to those obtained with other docking pro-
grams (rigid or flexible) for the MM potential, but
inferior for the PMF one. We find that overall there is
a close correspondence between PRO_LEADS results
and our own results with the MM potential. In direct

docking, PRO_LEADS success rates range from 76 42 to
86%,41 depending upon the dataset chosen to test the
program in the publication. Percentages are slightly
different if a 2 Å cutoff is used, since PRO_LEADS
authors report a number of borderline cases which
change the percentage in going from the 1.5 to the 2 Å
cutoff, while our percentages remain essentially con-
stant. Similarly, prediction rates reported for GOLD in
direct docking using the 1.5 Å RMSD cutoff are 55%.26

Finally, David et al.25 have recently reported a molec-
ular mechanics based docking algorithm that, upon
testing on a dataset of 27 complexes, gave a success rate
of 63%, again using the 1.5 Å RMSD cutoff. Since both
MM and PMF share the modeling of the excluded
volume penalty and the same rigid body approach is
employed in both cases, it is unlikely that the under-
performance in the PMF case is due to an artifact in
the setup of the docking experiments. Thus, although
results of rigid docking should always be interpreted
and analyzed with care, it seems that the use of a rigid
body approach together with the 12-6 VDW potential
is not introducing serious artifacts in our results.

The same qualitative difference between MM and
PMF can be observed using the CEP (see Table 1a as
well as Figure 4). In Table 2 we quantify the differences
between MM and PMF and establish their significance.
For that purpose, the distribution of errors obtained at
all three resolutions for all different complexes is
compared with the distribution of errors obtained when
a random number replaces the interaction energy. A
Student’s t-test is then used to determine whether the
observed differences are significant. Our results indicate
that error distributions obtained by MM and PMF are
significantly different, and also very different from what
should be expected by using a random number generator
as the energy function, supporting the significance of
the differences.

Given the superiority of MM in this case, we also
decided to explore in more detail the MM function and
went on to study the relative weights of steric and
electrostatic interactions in the performance of the
docking score. We found that omitting the electrostatic
term has a relatively small impact in the performance
of the function. As expected, the largest differences are
observed for small molecules with strong charge-charge
interactions (Figure 5). Overall, however, the results
suggest that the Coulombic term is playing a relatively
minor role compared with the steric term, as it is only
responsible for fine-tuning the orientation of the ligand,
whereas the steric term controls the overall positioning.

Function Performance with Coordinate Shifts. While
the experiments reported so far give information about
the behavior of the function when exact coordinates are
used, the most significant case from the point of view
of virtual screening applications is the study of the
behavior of the function in cases where the coordinates
of the receptor are taken from a cocrystal obtained with
a ligand analogue (cross-docking, hereafter). Due to
computational and experimental constraints, virtual
screening experiments normally use a rigid receptor
derived from a cocrystal with a structurally related
ligand. Thus, cross-docking experiments provide insight
into the effect that these inaccuracies can have in the
performance of the docking functions.
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Figure 3. Coverage-error plots (CEPs) at 2.0 Å resolution and the corresponding energy landscapes. Examples at three different
error levels are shown. Background colors in the CEP plots represent the docking success region (green, region III) or the docking
failure region (red, regions I and II). Each line in the CEP plot represents a different complex studied. Simultaneously, docking
energy landscapes are also shown. Examples of energy surfaces (pdb id of the corresponding complex is indicated) in cases of low
(green in the CEP plot, cases of 1abe (a) and 1dwc (b)), medium and high (both in red in the CEP plot, cases of 1ela and 1dbm (a),
and 1abe and 1did (b)) function error are given to illustrate the correspondence with the numerical results obtained with the
CEP plots. The different isocontour lines are in different colors in the figure. The isocontour containing the global energy minimum
is shown in red. (a) MM; (b) PMF.
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In cross-docking the performance of both functions is,
as expected, poorer than with exact coordinates. As
summarized in Table 1b, both functions fail to predict
correct orientations in about 50% of the cases. To be
more specific, using RMS as a figure of merit, and a 1.5
Å cutoff to define success, MM has a success rate of 56%
in cross-docking while in the case of PMF the success
rate is 41%. There are very few docking studies ad-
dressing cross-docking performance. The most exhaus-
tive study to date is from Murray et al.,42 using
PRO_LEADS, who obtained a 49% success rate in cross-
docking all pairs of complexes using a database of
complexes for three enzymes (thrombin, thermolysin,
and neuraminidase). Thus, a similar deterioration in
performance is obtained, suggesting again that dete-
rioration is not due to the rigid docking protocol or
implementation of the VDW function. Figure 6 shows
the error changes in switching from the exact coordi-
nates case to the cross-docking one. MM seems to be
more sensitive to the changes in coordinates than PMF,
where even some improvements in docking quality are
observed in cross-docking compared with the direct
docking, although these are probably the results of
chance effects. As can be observed in Figure 4 by looking
at the distribution of errors, cross-docking performance
for both functions is about the same.

We compared the differences in docking performance
with the amount of induced fit observed in protein by
measuring the RMSD between pairs of proteins com-
plexed with analogous ligands. These differences were
evaluated separately for backbone and side chains. In
agreement with Murray et al.,42 we observed that
backbone RMSD is not negligible in cross-docking
(Figure 7). In addition, we did not find any common
pattern able to explain the observed differences in
docking results (data not shown). Similar degradation
in performance with cross-docking has also been re-
ported by Murray et al.,42 who found the changes in
structural features that lead to misdocking to be highly
case dependent.

Linear Discriminant Analysis. LDA calculations were
carried out for both functions in order to find physico-
chemical descriptors able to classify the results of
docking with exact coordinates as “successes” or “fail-
ures”, as defined by CEP analysis. An error percentage
in the function of 15% for MM and 10% for PMF was
selected as boundary for group classification, based on
the observed distribution of errors (Figure 4). The
stability of the results (i.e., robustness in the models)

was tested by systematically changing the boundary
from 10 to 60% of error. Shifts in the boundary defini-
tion affected slightly to the quality of the discrimination
models, but barely had any influence on the set of
descriptors selected (Table 3).

Initial LDA models obtained from the MM function
indicated that molecular refractivity (MR) was a major
descriptor for classifying docking results. The best model
had 53% of discrimination power, a Wilks’ Λ of 0.66,
and a P-value of 0.06. Two different physical effects
come into play in the calculation of the MR value:
molecular bulk and polarizability (reflecting in turn
dispersion interactions). Since we obtained almost
equally significant models replacing MR by molecular
volume as a descriptor, we suspected that in this case
MR was reflecting mainly a volume effect. This was
supported by the bimodal distribution of the volume of
our ligands in the set (not shown). Thus, in an attempt
to decouple both effects, we tested discriminant models
including only molecules above 200 Å3, on the basis of
our observation of volume distribution. This eliminated
only nine molecules from the set. When the volume filter
is applied, the best discriminant equation includes SL,
LP, L/BS, and L/HB as descriptors (Table 4) and has a
discrimination power of 84%, with a Wilks’ Λ of 0.40,
F-test of 7.4, and a P-value of 0.0008 (Tables 5 and 6).
The significance was also established by randomly
scrambling the dependent variable 20 times, giving
averaged values of 39% for discrimination power, Wilks’
Λ of 0.78, F-test of 1.23, and a P-value of 0.48 (Table
6). Thus, the models obtained are significant and robust,
and, since previously observed volume effects disappear,
this suggests that the initial models were suffering from
artifacts of the volume distribution in our set.

The discriminant equation (Figure 8a) is dominated
by SL and LP, with a F-ratio three times larger than
that corresponding to the other two variables (Table 4).
Analysis of the means and standard deviations of each
group (Table 4) led us to conclude that molecules
predominantly polar (SL, L/NHB), but with concomitant
hydrophobic patches (LP), and not entirely filling the
binding site (L/BS), are more prone to failure with the
MM function. It seems therefore that polar effects,
particularly in the form of hydrogen bonds and charge
desolvation, are not fully considered by the MM func-
tion, but have significant effects in the likelihood of a
successful docking. The effect of ligand desolvation is
not surprising, since our simplified MM potential does
not include it, but the results stress its important
contribution to the physics of the docking process and
underline the need for its systematic incorporation in
docking force fields. Neglecting electrostatic desolvation
contributions was deemed necessary in the past, due to
the computational difficulties posed by the numerical
solution of the Poisson-Boltzmann equation in the
docking problem (solving a system of partial differential
equations is a computationally costly procedure), and
the lack of satisfactory simplified approaches. Recently,
encouraging developments have been presented that
allow for less expensive estimations of desolvation
penalties.43 On the basis of our results, we expect that
introduction of these techniques will considerably im-
prove current docking functions. On the other hand, the
effect of hydrogen bonds might not have been expected

Table 2. Statistical Significance of Docking Results at
Different Resolutions (CEP Results Used To Quantify Docking
Success)

resolution (Å)

potential 0.5 1.0 2.0

(a) Direct Docking
MM 0.35 0.05 0.06
MM (VDW only) 0.82 0.07 0.17
PMF 0.74 0.17 0.14

(b) Cross-Docking
MM 0.78 0.02 0.05
PMF 0.25 0.16 0.08

a P-value for a students’ t-test,34 comparing the distribution of
errors obtained at three resolutions for the different complexes
with the distribution of errors obtained when a random number
replaces the interaction energy value.31
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a priori, since the AMBER force field, like most MM
potentials, accounts for hydrogen bond effects through
their van der Waals and electrostatic components.
However, hydrogen bond interactions are far from being
completely understood. Experimentally, it has been
shown that hydrogen bonds are highly directional, and
in many cases their interaction energies are found to

be nonadditive and nontransferable.44 Theoretically,
while the main stabilization energy appears to be
electrostatic, some other effects are found nonnegli-
gible.45 Thus, many-body effects such as polarization are
estimated to contribute up to 30% of the total interaction
energy in small water clusters,46 and about 10% in other
clusters.47 Charge transfer also appears to be relevant,

Figure 4. Histograms showing the distribution of errors in our set of complexes in the following cases: (a) MM with exact
coordinates; (b) MM with cross-docking; (c) PMF with exact coordinates; (d) PMF with cross-docking; (e) MM without electrostatic
term; (f) random energy function.
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having a contribution between 20 and 60% of the total
interaction energy in small hydrogen-bonded clusters.48

For these reasons, hydrogen bonds are difficult to model
accurately with a fixed set of monopole-based atomic
charges. In fact, it is not the first time it has been found
that hydrogen bonds need special treatment when
dealing with intermolecular interactions in biomol-
ecules. For example, van der Vaart et al.49 in their
energy decomposition analysis of folding simulations of
a small hydrophobic protein found that inclusion of
charge-transfer and polarization effects were crucial in
the stabilization of the system, and that charge transfer
occurs almost exclusively through hydrogen bonds.
Likewise, Hassan et al.,45 during their development of
implicit solvent models, found that successful folding
simulations of small peptides were only possible after
special parametrization of interactions involving hydro-
gen bonds, which needed consideration of directional
effects.50

In the case of the PMF function, MR appeared as the
most important descriptor either with or without volume
filter. Although we have not made a specific calculation,
we would predict that simpler descriptors such as atom
counting would provide good discrimination results. The
best models had MR and L/BS as the best descriptors
to classify docking results, obtaining a discriminant
equation (Figure 8b) with a classification power of 77%,
a Wilks’ Λ of 0.43, a F-test of 19.8, and a P-value of
0.000 01 (Tables 4-6). Significance was also tested with
the scrambled models, which gave an average classifica-
tion power of only 22%, a Wilks’ Λ of 0.95, F-test of 0.67,
and a P-value of 0.66 (Table 6). In a further effort to
determine the importance of dispersion effects, we made
an additional computational experiment in which the
MR was divided by the molecular volume, to isolate the
term related to refractive index. A new discriminant

analysis run was performed, but this time removing first
from the analysis those variables correlated with vol-
ume. The model obtained is shown in Table 7, where it
can be seen that although poorer in quality than the
previously discussed models is, nevertheless, significant.
As stated previously, MR has been used traditionally
in QSAR as an estimator of bulk and dispersion interac-
tions. Since failures in docking tend to occur for the
molecules with the smallest value of MR in our set, the
discriminant model suggests that dispersion effects are
not entirely correct in the PMF function when these
interactions are weak. These interactions are modeled
in MM force fields through the attractive part of the
Lennard-Jones potential, precisely the part of the
potential being replaced by the PMF function. Our
analysis suggests that a correct modeling of both
excluded volume and attractive interactions is difficult
if statistical potentials are directly mixed with physi-
cally based force fields; simple addition is not warranted.
A possible explanation for this effect can be found in
the lack of direct correspondence between elementary
interaction energies and the “effective” energies derived
from potentials of mean force.51 Consider a pure hard
sphere liquid in which there are no interactions between
spheres except for the excluded volume. The PMF
between particles in this liquid is nonzero, in fact it has
an attractive minima at the contact distance, even
though the potential energy is zero beyond the contact
distance. Using the derived PMF and putting back
directly the excluded volume would not reproduce the
real energy surface for the system, it would actually
create a distorted surface, with a tendency to maximize
the number of contacts between spheres, i.e., it would
create an artificial surface tension in the system.
Couplings of this sort have been observed in computer
simulations of liquids51 as well as in lattice models of

Figure 5. Error differences in going from the MM to the VDW only function with exact coordinates. Complexes where the MM
function fails are marked at the bottom of the table.
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proteins,51,52 and it can be expected that similarly
complex effects also operate in protein-ligand systems.

It is interesting to note that L/BS is a descriptor
playing opposite effects within each scoring function
(Table 3). MM has a tendency to fail if the ligand is not
filling the binding site, which seems to be related, as
discussed previously, to inaccuracies in treatment of
hydrogen bonds and desolvation effects, particularly
when the molecule binds at the protein/solvent interface.
On the other hand, PMF fails when the ligand has

extensive steric interactions with the protein, suggesting
a poor description of dispersion effects (hard core
repulsion is treated in the same way with both poten-
tials), as is indeed pointed out in the analysis by the
presence of MR. However, and possibly due to a better
consideration of hydrogen bond interactions, PMF al-
lows small molecules (with respect to the binding site)
to be correctly docked. This is in agreement with
observations by Mitchell et al.,53 who showed a good
correspondence between hydrogen bond energies as

Figure 6. Error differences in going from “exact” docking to cross-docking. Dotted lines show the cutoffs selected to define the
success of the function in each case (see Linear Discriminant Analysis). Complexes for which the docking function fails in the
“exact” coordinates case are highlighted in the figure with unfilled (20-50% error) or filled (50-100% error) marks. (a) MM; (b)
PMF.
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determined by quantum chemical methods and those
determined by statistical potentials.

Cross-docking results were not evaluated by linear
discriminant analysis because the number of members
on each family was not sufficient to allow the derivation
of a reliable discriminant model. This imbalance pre-
cludes obtaining reliable information from the LDA
analysis, because it breaks down one of the basic
requirements to evaluate the significance of the LDA
results: the assumption of equal variances and covari-
ances for both groups of data. We stress that the
imbalance does not seem to be due to artifacts created
by the rigid body approach, but rather it seems to be
the result of the considerably larger overlap of nativelike
and nonnativelike energy spectra in the cross-docking
case. We note that this phenomenon has been observed
also by Murray et al.42 in their cross-docking experi-
ments using PRO_LEADS, and thus it does not seem
to be related to peculiarities of our docking implementa-
tion.

Conclusions
A procedure to quantitatively evaluate docking func-

tions has been presented, which has the important
feature of capturing information about binding energy
landscapes. To be able to exhaustively search the
relevant conformational space for a statistically signifi-
cant number of cases, docking has been restricted to the
rigid body case, and the six relevant degrees of freedom
have been conveniently discretized. The method has
been used to study MM and statistical potentials. Linear
discriminant analysis has then been applied to these
numerical results in order to find physicochemical
descriptors able to separate successes from failures, with
the purpose of obtaining deeper physical insight about
the main energetic factors at play in the docking
process. We caution that the docking results, and
consequently our linear discriminant analysis, can be
somewhat dependent upon details of the implementa-
tion of the potentials, particularly the VDW terms, as

Figure 7. Correlation between the RMSD observed in backbone and in side chains for every pair of protein structures in our set.
Residues in a 8 Å sphere around the binding site of the ligand were selected for the calculation. A reasonable correlation is found
(r2 ) 0.64), with a slope of 1.93.

Table 3. Effect of Changing the Group Classification Cutoff in
the Linear Discriminant Analysis Results

linear discriminant anal
countcutoff

(%) fail OK
descrip-

tor
descriptor
power (%)

Wilks’
Λ F-test P-value

(a) MM (with Volume Filter, See Text)
10 10 15 SL 76 0.41 6.9 1.0 × 10-3

LP
LIBS
L/HB

15 9 16 SL 84 0.4 7.4 8.0 × 10-4

LP
L/BS
L/HB

17 7 18 SL 100 0.35 9.1 2.0 × 10-4

LP
L/BS
L/HB

23 6 19 SL 100 0.35 9.0 1.0 × 10-4

LP
L/BS
L/HB

35 5 20 SL 100 0.34 9.5 2.0 × 10-4

LP
DHB
MR

50 4 21 SL 100 0.48 5.4 4.0 ×10-3

LP
PL
DHB

(b) PMF
10 20 14 MR 77 0.43 19.8 1.0 × 10-5

L/BS
11 18 16 MR 71 0.49 16.0 1.0 × 10-5

L/BS
12 17 17 MR 53 0.56 12.1 1.0 × 10-4

L/BS
20 15 19 MR 41 0.67 31.0 2.5 × 10-3

L/BS
30 12 22 MR 41 0.84 5.9 2.1 × 10-2

50 8 26 L/HB 53 0.89 3.7 6.3 × 10-2

a Descriptors: SL, solvation; LP, log P; L/BS, percentage of the
free binding site volume occupied by the ligand volume; L/HB,
surface area of the ligand in Å2/hydrogen bond; MP, polarizability;
DHB, all possible ligand hydrogen bonds - ligand hydrogen bonds
accomplished on enzyme; MR, molar refractivity.

Evaluating Docking Functions Journal of Medicinal Chemistry, 2001, Vol. 44, No. 23 3781



it has been shown that the VDW implementation can
affect docking performance.54 There is the risk that rigid
body docking, together with the use of an underlying
grid and a hard VDW potential could in some cases
penalize nativelike solutions, particularly in complexes
displaying a strong complementarity. In fact, this is
likely the case of the 1srh complex. However, compari-
son of our results, particularly with the MM potential,
with other state-of-the-art docking codes, suggests that

these effects have played a minor role. In any case,
further studies with slightly modified conditions are
required to fully confirm our conclusions, which we
describe in what follows.

We find that the global minimum (if properly found)
is a necessary, but not sufficient, condition to judge a
docking function. Deeper insight, particularly about the
stability and kinetic accessibility of the solution, is
obtained if the complete docking energy surface is taken
into account. In this regard, the CEP plot seems to be
an adequate tool. Using CEPs, we find that MM force
fields seem to be superior to statistical potentials when
exact receptor coordinates are used. However, none of
the functions appear good enough to resolve effectively
the docking problem when there are coordinate shifts
in the receptor, as occurs in cross-docking. In this case
both functions show about the same performance.

Linear discriminant analysis studies of CEP results
allowed us to conclude that a sophisticated treatment
of desolvation effects and hydrogen bond interactions
appears to be required in the implementation of MM
potentials for docking. On the other hand, a detailed
consideration of steric interactions, with a careful
treatment of dispersive forces, seems to be needed when
using statistical potentials derived from a structural
database. Part of the difficulty in supplementing PMF
potentials with physically based terms could reside in
the fact that even “perfect” statistical potentials cannot
recover exactly the underlying physical potential energy

Table 4. Description of the Best Linear Discriminant Models Found

mean std dev significance

descriptora fail OK overall fail OK overall F-ratiob P-value

(a) MM (with Volume Filter, See Text)
SL 80.79 41.85 55.87 19.12 37.45 36.91 8.55 1.0 102
LP 5.84 4.06 4.7 3.12 2.78 2.97 11.28 3.0 103
L/BS 29.01 35.66 33.27 8.84 7.7 8.58 3.69 7.0 102
L/HB 58.3 82.37 73.71 12.5 48.97 41.11 4.55 5.0 102

(b) PMF
MR 64.8 116.63 86.14 28.51 26.16 37.52 39.01 1.0 106
L/BS 38.45 36.34 37.58 12.69 8.08 10.94 6.02 2.0 102

a Descriptors (see Methods): SL, solvation; LP, log P; L/BS, percentage of binding site volume occupied by ligand; L/HB, surface area
of the ligand in Å2/hydrogen bond; MR, molar refractivity. bF-ratio is used to assess the significance of removing the corresponding
descriptor.34

Table 5. Classification Tables of the Linear Discriminant
Functions Obtained with Each Docking Function: MM after
Volume Filter (See Text for Details)

predicted

MM PMF

fail OK total fail OK total

obsd fail 8 1 9 18 2 20
OK 1 15 16 2 12 14
total 9 16 25 20 14 34

Table 6. Comparison of the Best Linear Discriminant Model
Found for Each Docking Function (Observed) with the Mean
Result from Scrambled Models (Randomized) (Standard
Deviations Also Shown in Parentheses)

potentials
discriptor
power (%) Wilks’ Λ F-test P-value

MM observed 84 0.40 7.4 8.0 104
randomized 39(18) 0.78(0.16) 1.2(0.8) 0.48(0.30)

PMF observed 77 0.43 19.8 1.0 105
randomized 22(8) 0.95(0.05) 0.7(1.0) 0.66(0.27)

Table 7. Best Linear Discriminant Model Obtained by Excluding Volume Related Descriptors (See Text for Details)

(a) Descriptors Selected and Influence in the Model

mean std dev significance

descriptorsa fail OK overall fail OK overall F-ratiob P-value

MR/VO 0.27 0.29 0.29 0.05 0.01 0.04 1.6 2.1 101
SL 71.83 42.94 57.38 60.45 35.89 51.10 3.21 8.3 102
HB 4.29 6.41 5.35 1.83 2.48 2.40 7.57 9.9 103

(b) Classification Table

predicted PMF

fail OK total

obsd fail 12 5 17
OK 3 14 17
total 15 19 34

(c) Discrimant Performance

potentials discriptor power (%) Wilks’ Λ F-test P-value

PMF 53 0.68 4.5 9.7 × 10-2

a Descriptors: MR/VO, molar refractivity divided by volume; SL, solvation; HB, all possible ligand hydrogen bonds. bF-ratio is used to
assess the significance of removing the corresponding descriptor.
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used to generate them. This study however suggests
that both functions contain different but, in some ways,
complementary information, which could in principle be
mixed in the design of better docking potentials. For
example, a correction of the hydrogen bond term by
incorporating statistical potentials in MM seems obvi-
ous.

Finally, our results could be fruitfully exploited in the
design and filtering of molecular databases in virtual
screening or combinatorial docking. In this paper we
show that it is possible to establish quantitative rela-
tionships between likelihood of docking success using a
given docking function and simple physicochemical
descriptors, readily computable from the molecular
structure of the ligand alone or in combination with the
active site being targeted, but in any case prior to any
docking calculation. This opens the possibility of biasing
virtual library design or filtering chemical databases by
selecting those molecules with high probability of dock-
ing success according to the values of their physico-

chemical descriptors, and integrates nicely with recent
proposals to design and tailor compound libraries on the
basis of other parameters important in drug discovery,
for instance predicted solubility, membrane perme-
ability, or metabolic stability, using physicochemical
descriptors.55,56 Also, and since a correct docking mode
is a prerequisite for being able to predict correctly
binding affinities, this is an interesting alternative to
other proposals aimed at increasing the hit rate of active
molecules, such as those based on the combination of
scoring functions.57,58 It can be expected that molecular
diversity of a library created through selection of highly
probable dockings coming from different (separated)
docking functions will be larger than that obtained by
applying a single consensus scoring function. We will
explore these issues in future research.
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